致曲术
一卷。清夏鸾翔(详见《洞方术图解》)撰。《致曲术》专事研究二次曲线,其中用无穷级数展开的方法解决椭圆积分中的问题,颇有创新之处。项、戴椭圆求周术与李善兰尖锥求积术均提出了定积分的级数展开表达之方法,夏氏则加以推广,例如他给出了椭圆上一段椭弧长S的幂级数展开式,为此他创造了“椭正弦求椭弧背术”,这在我国是为首创。他的幂级数与现代用定积分求出的结果完全一致。《代微积拾级》只有计算椭圆绕长轴旋转所成曲面的全部面积公式,在《致曲术》中夏鸾翔创立了表达一段椭弧绕长轴或短轴旋转而成曲面面积的级数展开式,他还解决了一些有关抛物线、对数曲线和几种螺线的计算问题。他还有条件地给出了双曲线上一般曲线长的级数展开式,并为不以得出一个表达双曲线旋转面部分面积的收敛级数而感到十分遗憾。《致曲术》版本有《夏氏算书遗稿》本,现藏浙江图书馆与北京图书馆;《古今算学丛书》本;《蛰云雷斋丛书》本。